Condensed Matter > Materials Science
[Submitted on 10 Jul 2013
]
Title: Magnetocrystalline Anisotropy and the Magnetocaloric Effect in Fe2P
Title: 铁磷化物中的磁晶各向异性和磁热效应
Abstract: Magnetic and magnetocaloric properties of high-purity, giant magnetocaloric polycrystalline and single-crystalline Fe2P are investigated. Fe2P displays a moderate magnetic entropy change which spans over 70 K and the presence of strong magnetization anisotropy proves this system is not fully itinerant but displays a mix of itinerant and localized magnetism. The properties of pure Fe2P are compared to those of giant magnetocaloric (Fe,Mn)2(P,A) compounds helping understand the exceptional characteristics shown by the latter which are so promising for heat pump and energy conversion applications.
Current browse context:
cond-mat.mtrl-sci
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.