Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 24 Mar 2014
(v1)
, last revised 8 May 2014 (this version, v2)]
Title: Did BICEP2 see vector modes? First B-mode constraints on cosmic defects
Title: BICEP2看到了矢量模态吗? 首次对宇宙缺陷的B模约束
Abstract: Scaling networks of cosmic defects, such as strings and textures, actively generate scalar, vector and tensor metric perturbations throughout the history of the universe. In particular, {\em vector} modes sourced by defects are an efficient source of the CMB B-mode polarization. We use the recently released BICEP2 and POLARBEAR B-mode polarization spectra to constrain properties of a wide range of different types of cosmic strings networks. We find that in order for strings to provide a satisfactory fit on their own, the effective inter-string distance needs to be extremely large -- spectra that fit the data best are more representative of global strings and textures. When a local string contribution is considered together with the inflationary B-mode spectrum, the fit is improved. We discuss implications of these results for theories that predict cosmic defects.
Submission history
From: Levon Pogosian [view email][v1] Mon, 24 Mar 2014 19:54:03 UTC (264 KB)
[v2] Thu, 8 May 2014 09:22:08 UTC (264 KB)
Current browse context:
astro-ph.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.