Condensed Matter > Superconductivity
[Submitted on 31 Jul 2016
]
Title: Effects of Domain Walls in Quantum Anomalous Hall Insulator/Superconductor Heterostructures
Title: 量子反常霍尔绝缘体/超导体异质结构中畴壁的影响
Abstract: In a recent experiment, half-quantized longitudinal conductance plateaus (HQCPs) of height $\frac{e^2}{2h}$ have been observed in quantum anomalous Hall (QAH) insulator/superconductor heterostructure transport measurements. It was predicted that these HQCPs are signatures of chiral Majorana edge states. The HQCPs are supposed to appear in the regimes where the Hall conductance $\sigma_{xy}$ is quantized. However, experimentally, a pair of the HQCPs appear when the Hall conductance $\sigma_{xy}$ is only 80% of the quantized value when dissipative channels appear in the bulk. The dissipative channels in the bulk are expected to induce Andreev reflections and ruin the HQCPs. In this work, we explain how domain walls can cause $\sigma_{xy}$ to deviate from its quantized value and at the same time maintain the quantization of HQCPs. Our work supports the claim that the experimentally observed HQCPs are indeed caused by chiral Majorana modes in the QAH insulator/superconductor heterostructure.
Current browse context:
cond-mat.supr-con
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.