Statistics > Methodology
[Submitted on 7 Apr 2017
]
Title: A second-order PHD filter with mean and variance in target number
Title: 带有目标数均值和方差的二阶PHD滤波器
Abstract: The Probability Hypothesis Density (PHD) and Cardinalized PHD (CPHD) filters are popular solutions to the multi-target tracking problem due to their low complexity and ability to estimate the number and states of targets in cluttered environments. The PHD filter propagates the first-order moment (i.e. mean) of the number of targets while the CPHD propagates the cardinality distribution in the number of targets, albeit for a greater computational cost. Introducing the Panjer point process, this paper proposes a second-order PHD filter, propagating the second-order moment (i.e. variance) of the number of targets alongside its mean. The resulting algorithm is more versatile in the modelling choices than the PHD filter, and its computational cost is significantly lower compared to the CPHD filter. The paper compares the three filters in statistical simulations which demonstrate that the proposed filter reacts more quickly to changes in the number of targets, i.e., target births and target deaths, than the CPHD filter. In addition, a new statistic for multi-object filters is introduced in order to study the correlation between the estimated number of targets in different regions of the state space, and propose a quantitative analysis of the spooky effect for the three filters.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.