Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 May 2020
(v1)
, last revised 2 Apr 2025 (this version, v4)]
Title: Normalized Convolutional Neural Network
Title: 归一化卷积神经网络
Abstract: We introduce a Normalized Convolutional Neural Layer, a novel approach to normalization in convolutional networks. Unlike conventional methods, this layer normalizes the rows of the im2col matrix during convolution, making it inherently adaptive to sliced inputs and better aligned with kernel structures. This distinctive approach differentiates it from standard normalization techniques and prevents direct integration into existing deep learning frameworks optimized for traditional convolution operations. Our method has a universal property, making it applicable to any deep learning task involving convolutional layers. By inherently normalizing within the convolution process, it serves as a convolutional adaptation of Self-Normalizing Networks, maintaining their core principles without requiring additional normalization layers. Notably, in micro-batch training scenarios, it consistently outperforms other batch-independent normalization methods. This performance boost arises from standardizing the rows of the im2col matrix, which theoretically leads to a smoother loss gradient and improved training stability.
Submission history
From: Dongsuk Kim [view email][v1] Mon, 11 May 2020 17:20:26 UTC (88 KB)
[v2] Tue, 12 May 2020 17:05:15 UTC (88 KB)
[v3] Mon, 18 May 2020 10:19:32 UTC (88 KB)
[v4] Wed, 2 Apr 2025 08:53:46 UTC (14,891 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.