Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > math > arXiv:2108.01416v1

Help | Advanced Search

Mathematics > Analysis of PDEs

arXiv:2108.01416v1 (math)
[Submitted on 3 Aug 2021 ]

Title: A heat flow for the mean field equation on a finite graph

Title: 一个有限图上的平均场方程的热流

Authors:Yong Lin, Yunyan Yang
Abstract: Inspired by works of Cast\'eras (Pacific J. Math., 2015), Li-Zhu (Calc. Var., 2019) and Sun-Zhu (Calc. Var., 2020), we propose a heat flow for the mean field equation on a connected finite graph $G=(V,E)$. Namely $$ \left\{\begin{array}{lll} \partial_t\phi(u)=\Delta u-Q+\rho \frac{e^u}{\int_Ve^ud\mu}\\[1.5ex] u(\cdot,0)=u_0, \end{array}\right. $$ where $\Delta$ is the standard graph Laplacian, $\rho$ is a real number, $Q:V\rightarrow\mathbb{R}$ is a function satisfying $\int_VQd\mu=\rho$, and $\phi:\mathbb{R}\rightarrow\mathbb{R}$ is one of certain smooth functions including $\phi(s)=e^s$. We prove that for any initial data $u_0$ and any $\rho\in\mathbb{R}$, there exists a unique solution $u:V\times[0,+\infty)\rightarrow\mathbb{R}$ of the above heat flow; moreover, $u(x,t)$ converges to some function $u_\infty:V\rightarrow\mathbb{R}$ uniformly in $x\in V$ as $t\rightarrow+\infty$, and $u_\infty$ is a solution of the mean field equation $$\Delta u_\infty-Q+\rho\frac{e^{u_\infty}}{\int_Ve^{u_\infty}d\mu}=0.$$ Though $G$ is a finite graph, this result is still unexpected, even in the special case $Q\equiv 0$. Our approach reads as follows: the short time existence of the heat flow follows from the ODE theory; various integral estimates give its long time existence; moreover we establish a Lojasiewicz-Simon type inequality and use it to conclude the convergence of the heat flow.
Abstract: 受Castéras(Pacific J. Math., 2015)、Li-Zhu(Calc. Var., 2019)和Sun-Zhu(Calc. Var., 2020)工作的启发,我们提出了一个在连通有限图$G=(V,E)$上的平均场方程的热流。 即$$ \left\{\begin{array}{lll} \partial_t\phi(u)=\Delta u-Q+\rho \frac{e^u}{\int_Ve^ud\mu}\\[1.5ex] u(\cdot,0)=u_0, \end{array}\right. $$其中 $\Delta$是标准图拉普拉斯算子,$\rho$是一个实数, $Q:V\rightarrow\mathbb{R}$是满足$\int_VQd\mu=\rho$的函数,且 $\phi:\mathbb{R}\rightarrow\mathbb{R}$是包括$\phi(s)=e^s$在内的某些光滑函数之一。 我们证明了对于任何初始数据$u_0$和任何$\rho\in\mathbb{R}$,上述热流存在唯一的解$u:V\times[0,+\infty)\rightarrow\mathbb{R}$;此外,$u(x,t)$在$x\in V$上一致收敛到某个函数$u_\infty:V\rightarrow\mathbb{R}$,当$t\rightarrow+\infty$时,$u_\infty$是平均场方程$$\Delta u_\infty-Q+\rho\frac{e^{u_\infty}}{\int_Ve^{u_\infty}d\mu}=0.$$的解。尽管$G$是一个有限图,这个结果仍然是出乎意料的,即使在特殊情形$Q\equiv 0$中也是如此。 我们的方法如下:热流的短时间存在性由常微分方程理论得出;各种积分估计给出了其长时间存在性;此外我们建立了洛萨列夫-西蒙类型不等式,并用它来得出热流的收敛性。
Comments: 15 pages
Subjects: Analysis of PDEs (math.AP) ; Combinatorics (math.CO)
MSC classes: 35R02, 34B45
Cite as: arXiv:2108.01416 [math.AP]
  (or arXiv:2108.01416v1 [math.AP] for this version)
  https://doi.org/10.48550/arXiv.2108.01416
arXiv-issued DOI via DataCite

Submission history

From: Yunyan Yang [view email]
[v1] Tue, 3 Aug 2021 11:14:33 UTC (19 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • TeX Source
license icon view license
Current browse context:
math.AP
< prev   |   next >
new | recent | 2021-08
Change to browse by:
math
math.CO

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号