Astrophysics > Astrophysics of Galaxies
[Submitted on 12 Jan 2023
(v1)
, last revised 18 Jan 2023 (this version, v2)]
Title: Chrono-chemodynamical analysis of the globular cluster NGC 6355: Looking for the fundamental bricks of the Bulge
Title: 对球状星团 NGC 6355 的时序化学动力学分析:寻找晕的构成基础
Abstract: The information on Galactic assembly time is imprinted on the chemodynamics of globular clusters. This makes them important probes that help us to understand the formation and evolution of the Milky Way. Discerning between in-situ and ex-situ origin of these objects is difficult when we study the Galactic bulge, which is the most complex and mixed component of the Milky Way. To investigate the early evolution of the Galactic bulge, we analysed the globular cluster NGC 6355. We derived chemical abundances and kinematic and dynamic properties by gathering information from high-resolution spectroscopy with FLAMES-UVES, photometry with the Hubble Space Telescope, and Galactic dynamic calculations applied to the globular cluster NGC 6355. We derive an age of $13.2\pm1.1$ Gyr and a metallicity of [Fe/H]$=-1.39\pm0.08$ for NGC 6355, with $\alpha$-enhancement of [$\alpha$/Fe]$=+0.37\pm0.11$. The abundance pattern of the globular cluster is compatible with bulge field RR Lyrae stars and in-situ well-studied globular clusters. The orbital parameters suggest that the cluster is currently confined within the bulge volume when we consider a heliocentric distance of $8.54\pm0.19$ kpc and an extinction coefficient of $R_V = 2.84\pm0.02$. NGC 6355 is highly likely to come from the main bulge progenitor. {Nevertheless, it still} has a low probability of being formed from an accreted event because its age is uncertain and because of the combined [Mg/Mn] [Al/Fe] abundance. Its relatively low metallicity with respect to old and moderately metal-poor inner Galaxy clusters may suggest a low-metallicity floor for globular clusters that formed in-situ in the early Galactic bulge.
Submission history
From: Stefano Souza [view email][v1] Thu, 12 Jan 2023 18:59:59 UTC (16,562 KB)
[v2] Wed, 18 Jan 2023 18:10:51 UTC (19,001 KB)
Current browse context:
astro-ph.GA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.