Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > cond-mat > arXiv:2306.01167v1

Help | Advanced Search

Condensed Matter > Materials Science

arXiv:2306.01167v1 (cond-mat)
[Submitted on 1 Jun 2023 ]

Title: Constraints on proximity-induced ferromagnetism in a Dirac semimetal (Cd$_3$As$_2$)/ferromagnetic semiconductor (Ga$_{1-x}$Mn$_x$Sb) heterostructure

Title: 在狄拉克半金属(Cd$_3$As$_2$)/铁磁半导体(Ga$_{1-x}$Mn$_x$Sb)异质结构中对近邻诱导铁磁性的约束

Authors:Arpita Mitra, Run Xiao, Wilson Yanez, Yongxi Ou, Juan Chamorro, Tyrel McQueen, Alexander J. Grutter, Julie A. Borchers, Michael R. Fitzsimmons, Timothy R. Charlton, Nitin Samarth
Abstract: Breaking time-reversal symmetry in a Dirac semimetal Cd$_3$As$_2$ through doping with magnetic ions or by the magnetic proximity effect is expected to cause a transition to other topological phases (such as a Weyl semimetal). To this end, we investigate the possibility of proximity-induced ferromagnetic ordering in epitaxial Dirac semimetal (Cd$_3$As$_2$)/ferromagnetic semiconductor (Ga$_{1-x}$Mn$_x$Sb) heterostructures grown by molecular beam epitaxy. We report the comprehensive characterization of these heterostructures using structural probes (atomic force microscopy, x-ray diffraction, scanning transmission electron microscopy), angle-resolved photoemission spectroscopy, electrical magneto-transport, magnetometry, and polarized neutron reflectometry. Measurements of the magnetoresistance and Hall effect in the temperature range 2 K - 20 K show signatures that could be consistent with either a proximity effect or spin-dependent scattering of charge carriers in the Cd$_3$As$_2$ channel. Polarized neutron reflectometry sets constraints on the interpretation of the magnetotransport studies by showing that (at least for temperatures above 6 K) any induced magnetization in the Cd$_3$As$_2$ itself must be relatively small ($<$ 14 emu/cm$^3$).
Abstract: 通过掺杂磁性离子或利用磁性近邻效应在狄拉克半金属 Cd$_3$As$_2$中打破时间反演对称性,预计会导致向其他拓扑相(如外尔半金属)的转变。 为此,我们研究了通过分子束外延生长的外延狄拉克半金属(Cd$_3$As$_2$)/铁磁半导体(Ga$_{1-x}$Mn$_x$Sb)异质结构中近邻诱导的铁磁序的可能性。 我们使用结构探测工具(原子力显微镜、X射线衍射、扫描透射电子显微镜)、角分辨光电子能谱、电学磁输运、磁强计和偏振中子反射技术对这些异质结构进行了全面表征。 在2 K - 20 K温度范围内的磁电阻和霍尔效应测量显示,这些特征可能与邻近效应或Cd$_3$As$_2$通道中电荷载流子的自旋依赖性散射一致。 极化中子反射率研究通过显示(至少对于高于6 K的温度)Cd$_3$As$_2$本身任何感应磁化必须相对较小($<$ 14 emu/cm$^3$)来对磁输运研究的解释施加限制。
Subjects: Materials Science (cond-mat.mtrl-sci)
Cite as: arXiv:2306.01167 [cond-mat.mtrl-sci]
  (or arXiv:2306.01167v1 [cond-mat.mtrl-sci] for this version)
  https://doi.org/10.48550/arXiv.2306.01167
arXiv-issued DOI via DataCite
Journal reference: Phys. Rev. Materials 7, 094201 (2023)
Related DOI: https://doi.org/10.1103/PhysRevMaterials.7.094201
DOI(s) linking to related resources

Submission history

From: Nitin Samarth [view email]
[v1] Thu, 1 Jun 2023 21:46:23 UTC (6,262 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • TeX Source
license icon view license
Current browse context:
cond-mat.mtrl-sci
< prev   |   next >
new | recent | 2023-06
Change to browse by:
cond-mat

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号