Mathematics > Optimization and Control
[Submitted on 16 Aug 2023
(this version)
, latest version 29 Jan 2024 (v2)
]
Title: Generalizing the Min-Max Regret Criterion using Ordered Weighted Averaging
Title: 使用有序加权平均推广最小最大遗憾准则
Abstract: In decision making under uncertainty, several criteria have been studied to aggregate the performance of a solution over multiple possible scenarios, including the ordered weighted averaging (OWA) criterion and min-max regret. This paper introduces a novel generalization of min-max regret, leveraging the modeling power of OWA to enable a more nuanced expression of preferences in handling regret values. This new OWA regret approach is studied both theoretically and numerically. We derive several properties, including polynomially solvable and hard cases, and introduce an approximation algorithm. Through computational experiments using artificial and real-world data, we demonstrate the advantages of our OWAR method over the conventional min-max regret approach, alongside the effectiveness of the proposed clustering heuristics.
Submission history
From: Marc Goerigk [view email][v1] Wed, 16 Aug 2023 17:20:43 UTC (96 KB)
[v2] Mon, 29 Jan 2024 07:24:51 UTC (236 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.