Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Sep 2023
(v1)
, last revised 29 Aug 2025 (this version, v3)]
Title: Large Intestine 3D Shape Refinement Using Point Diffusion Models for Digital Phantom Generation
Title: 大肠三维形状细化用于数字幻影生成的点扩散模型
Abstract: Accurate 3D modeling of human organs is critical for constructing digital phantoms in virtual imaging trials. However, organs such as the large intestine remain particularly challenging due to their complex geometry and shape variability. We propose CLAP, a novel Conditional LAtent Point-diffusion model that combines geometric deep learning with denoising diffusion models to enhance 3D representations of the large intestine. Given point clouds sampled from segmentation masks, we employ a hierarchical variational autoencoder to learn both global and local latent shape representations. Two conditional diffusion models operate within this latent space to refine the organ shape. A pretrained surface reconstruction model is then used to convert the refined point clouds into meshes. CLAP achieves substantial improvements in shape modeling accuracy, reducing Chamfer distance by 26% and Hausdorff distance by 36% relative to the initial suboptimal shapes. This approach offers a robust and extensible solution for high-fidelity organ modeling, with potential applicability to a wide range of anatomical structures.
Submission history
From: Kaouther Mouheb [view email][v1] Fri, 15 Sep 2023 10:10:48 UTC (17,077 KB)
[v2] Mon, 20 May 2024 10:07:30 UTC (16,996 KB)
[v3] Fri, 29 Aug 2025 08:17:14 UTC (4,692 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.