Physics > Fluid Dynamics
[Submitted on 8 Mar 2024
]
Title: Numerical simulations of a stochastic dynamics leading to cascades and loss of regularity: applications to fluid turbulence and generation of fractional Gaussian fields
Title: 随机动力学的数值模拟导致级联和正则性的丧失:流体湍流和分数高斯场生成的应用
Abstract: Motivated by the modeling of the spatial structure of the velocity field of three-dimensional turbulent flows, and the phenomenology of cascade phenomena, a linear dynamics has been recently proposed able to generate high velocity gradients from a smooth-in-space forcing term. It is based on a linear Partial Differential Equation (PDE) stirred by an additive random forcing term which is delta-correlated in time. The underlying proposed deterministic mechanism corresponds to a transport in Fourier space which aims at transferring energy injected at large scales towards small scales. The key role of the random forcing is to realize these transfers in a statistically homogeneous way. Whereas at finite times and positive viscosity the solutions are smooth, a loss of regularity is observed for the statistically stationary state in the inviscid limit. We here present novel simulations, based on finite volume methods in the Fourier domain and a splitting method in time, which are more accurate than the pseudo-spectral simulations. We show that the novel algorithm is able to reproduce accurately the expected local and statistical structure of the predicted solutions. We conduct numerical simulations in one, two and three spatial dimensions, and we display the solutions both in physical and Fourier spaces. We additionally display key statistical quantities such as second-order structure functions and power spectral densities at various viscosities.
Submission history
From: Laurent Chevillard [view email][v1] Fri, 8 Mar 2024 15:56:23 UTC (6,389 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.