Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > math > arXiv:2405.14771v1

Help | Advanced Search

Mathematics > Classical Analysis and ODEs

arXiv:2405.14771v1 (math)
[Submitted on 23 May 2024 ]

Title: Dunkl symmetric coherent pairs of measures. An application to Fourier Dunkl-Sobolev expansions

Title: Dunkl对称相干对的测度。 Dunkl-Sobolev展开在傅里叶中的应用

Authors:Mabrouk Sghaier, Francisco Marcellán
Abstract: Let $\mathcal{T}_{\mu}$ be the Dunkl operator. A pair of symmetric measures $(u, v)$ supported on a symmetric subset of the real line is said to be a symmetric Dunkl-coherent pair if the corresponding sequences of monic orthogonal polynomials $\{P_n\}_{n\geq 0}$ and $\{R_n\}_{n\geq 0}$ (resp.) satisfy $$ R_{n}(x)=\frac{\mathcal{T}_{\mu}P_{n+1} (x)}{\mu_{n+1}}-\sigma_{n-1}\frac{\mathcal{T}_{\mu} P_{n-1}(x)}{\mu_{n-1}}, n\geq 2,$$ where $\{\sigma_n\}_{n\geq1}$ is a sequence of non-zero complex numbers and $\mu_{2n}=2n, \mu_{2n-1}= 2n-1+ 2\mu, n\geq 1.$ In this contribution we focus the attention on the sequence $\{S_n^{(\lambda,\mu)}\}_{n\geq 0}$ of monic orthogonal polynomials with respect to the Dunkl-Sobolev inner product $$ <p,q>_{s,\mu}=<u,pq>+\lambda<v,\mathcal{T}_{\mu}p\mathcal{T}_{\mu}q>, \lambda >0, \ \ p, \ q \ \in \mathcal{P}.$$ An algorithm is stated to compute the coefficients of the Fourier--Sobolev type expansions with respect to $<. , .>$ for suitable smooth functions $f$ such that $f \in\mathcal{W}_2^1(R, u, v, \mu)=\{ f; \ \|f\|_{u}^{2} + \lambda \| \mathcal{T}_{\mu }f\|_{v}^{2} <\infty\}$. Finally, two illustrative numerical examples are presented.
Abstract: 设$\mathcal{T}_{\mu}$为Dunkl算子。 一对在实数线的对称子集上支撑的对称测度$(u, v)$被称为对称Dunkl相容对,如果对应的首一正交多项式序列$\{P_n\}_{n\geq 0}$和$\{R_n\}_{n\geq 0}$(分别) 满足$$ R_{n}(x)=\frac{\mathcal{T}_{\mu}P_{n+1} (x)}{\mu_{n+1}}-\sigma_{n-1}\frac{\mathcal{T}_{\mu} P_{n-1}(x)}{\mu_{n-1}}, n\geq 2,$$ 其中$\{\sigma_n\}_{n\geq1}$是一组非零复数序列,且 $\mu_{2n}=2n, \mu_{2n-1}= 2n-1+ 2\mu, n\geq 1.$ 在本次贡献中,我们关注序列 $\{S_n^{(\lambda,\mu)}\}_{n\geq 0}$的首一正交多项式,相对于 Dunkl-Sobolev 内积$$ <p,q>_{s,\mu}=<u,pq>+\lambda<v,\mathcal{T}_{\mu}p\mathcal{T}_{\mu}q>, \lambda >0, \ \ p, \ q \ \in \mathcal{P}.$$ 给出了一个算法,用于计算相对于$<. , .>$的傅里叶-索博列夫型展开的系数,对于合适的光滑函数$f$使得$f \in\mathcal{W}_2^1(R, u, v, \mu)=\{ f; \ \|f\|_{u}^{2} + \lambda \| \mathcal{T}_{\mu }f\|_{v}^{2} <\infty\}$。 最后,给出两个示例数值例子。
Subjects: Classical Analysis and ODEs (math.CA)
MSC classes: Primary 42C05, Secondary 33C45, 42C10
Cite as: arXiv:2405.14771 [math.CA]
  (or arXiv:2405.14771v1 [math.CA] for this version)
  https://doi.org/10.48550/arXiv.2405.14771
arXiv-issued DOI via DataCite

Submission history

From: Francisco Marcellan [view email]
[v1] Thu, 23 May 2024 16:38:57 UTC (18 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • HTML (experimental)
  • TeX Source
license icon view license
Current browse context:
math.CA
< prev   |   next >
new | recent | 2024-05
Change to browse by:
math

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号