Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > math > arXiv:2406.08925v2

Help | Advanced Search

Mathematics > Category Theory

arXiv:2406.08925v2 (math)
[Submitted on 13 Jun 2024 (v1) , last revised 3 Oct 2024 (this version, v2)]

Title: The higher algebra of weighted colimits

Title: 加权余极限的高阶代数

Authors:Hadrian Heine
Abstract: We develop a theory of weighted colimits in the framework of weakly bienriched $\infty$-categories, an extension of Lurie's notion of enriched $\infty$-categories. We prove an existence result for weighted colimits, study weighted colimits of diagrams of enriched functors, express weighted colimits via enriched coends, characterize the enriched $\infty$-category of enriched presheaves as the free cocompletion under weighted colimits, prove a Bousfield-Kan formula for weighted colimits and an enriched adjoint functor theorem and develop a theory of universally adjoining weighted colimits to an enriched $\infty$-category. Via the latter we construct for every presentably $\mathbb{E}_{k+1}$-monoidal $\infty$-category $\mathcal{V}$ for $1 \leq k \leq \infty$ and set $\mathcal{H}$ of weights a presentably $\mathbb{E}_k$-monoidal structure on the $\infty$-category of $\mathcal{V}$-enriched $\infty$-categories that admit $\mathcal{H}$-weighted colimits. Varying $\mathcal{H}$ this $\mathbb{E}_k$-monoidal structure interpolates between the tensor product for $\mathcal{V}$-enriched $\infty$-categories and the relative tensor product for $\infty$-categories presentably left tensored over $\mathcal{V}$. Studying functoriality in $\mathcal{H}$ we deduce that taking $\mathcal{V}$-enriched presheaves is $\mathbb{E}_k$-monoidal with respect to the tensor product on small $\mathcal{V}$-enriched $\infty$-categories and the relative tensor product on $\infty$-categories presentably left tensored over $\mathcal{V}.$ As key applications we construct for every $n \geq 1 $ and set $\mathcal{K}$ of $(\infty, n)$-categories a tensor product for $(\infty,n)$-categories that admit $\mathcal{K}$-indexed (op)lax colimits, a tensor product for Cauchy-complete $\mathcal{V}$-enriched $\infty$-categories and tensor products for (Cauchy complete) $n$-stable, $n$-additive and $n$-preadditive $(\infty,n)$-categories.
Abstract: 我们在弱双丰富$\infty$-范畴的框架下发展了加权极限的理论,这是对Lurie的丰富$\infty$-范畴概念的扩展。我们证明了加权极限的存在性结果,研究了丰富函子图的加权极限,通过丰富协边积分表达了加权极限,将丰富$\infty$-范畴的丰富预层表为在加权极限下的自由完备化,证明了加权极限的Bousfield-Kan公式和一个丰富的伴随函子定理,并发展了一个将加权极限普遍地附加到丰富$\infty$-范畴的理论。 通过后者,我们为每个可表示的$\mathbb{E}_{k+1}$-单oidal$\infty$-范畴$\mathcal{V}$对于$1 \leq k \leq \infty$和设置$\mathcal{H}$的权重,在$\infty$-范畴的$\mathcal{V}$-丰富$\infty$-范畴上构造一个可表示的$\mathbb{E}_k$-单oidal 结构,这些结构接受$\mathcal{H}$-加权余极限。 变化 $\mathcal{H}$这个$\mathbb{E}_k$-单子结构在$\mathcal{V}$-丰富$\infty$-范畴的张量积和在$\infty$-范畴中相对于$\mathcal{V}$的相对张量积之间进行插值。 研究$\mathcal{H}$的函子性,我们得出结论,取$\mathcal{V}$-丰富预层在小$\mathcal{V}$-丰富$\infty$-范畴上的张量积以及在$\infty$-范畴上相对于$\mathcal{V}.$的相对张量积时,是$\mathbb{E}_k$-单性的。作为关键应用,我们为每个$n \geq 1 $和集合$\mathcal{K}$的$(\infty, n)$-范畴构造了一个张量积,该张量积适用于具有$\mathcal{K}$-索引(对)弱余极限的$(\infty,n)$-范畴,适用于柯西完备的$\mathcal{V}$-丰富$\infty$-范畴的张量积,以及适用于(柯西完备)$n$-稳定、$n$-加性和$n$-预加性$(\infty,n)$-范畴的张量积。
Subjects: Category Theory (math.CT) ; Algebraic Topology (math.AT)
Cite as: arXiv:2406.08925 [math.CT]
  (or arXiv:2406.08925v2 [math.CT] for this version)
  https://doi.org/10.48550/arXiv.2406.08925
arXiv-issued DOI via DataCite

Submission history

From: Hadrian Heine [view email]
[v1] Thu, 13 Jun 2024 08:45:17 UTC (134 KB)
[v2] Thu, 3 Oct 2024 20:26:22 UTC (138 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • TeX Source
view license
Current browse context:
math.CT
< prev   |   next >
new | recent | 2024-06
Change to browse by:
math
math.AT

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号