Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > nucl-th > arXiv:2409.07432

Help | Advanced Search

Nuclear Theory

arXiv:2409.07432 (nucl-th)
[Submitted on 11 Sep 2024 ]

Title: Ab initio Green's functions approach for homogeneous nuclear matter

Title: 均匀核物质的从头算格林函数方法

Authors:Francesco Marino, Carlo Barbieri, Gianluca Colò, Weiguang Jiang, Samuel J. Novario
Abstract: Homogeneous nuclear matter is investigated using the \textit{ab initio} Self-consistent Green's function (SCGF) approach with nuclear interactions based on chiral effective field theory. The employed method, which combines the state-of-the-art algebraic diagrammatic construction approximation at third order with Gorkov correlations, is capable of computing both the equation of state (EOS) and single-particle properties of nuclear matter. The EOS calculated with our approach and coupled-cluster theory are shown to agree very well. The one-nucleon spectral functions and the momentum distributions are discussed to gain insights into the dynamics of the interacting nuclear matter.
Abstract: Homogeneous nuclear matter is investigated using the \textit{从头开始} Self-consistent Green's function (SCGF) approach with nuclear interactions based on chiral effective field theory. The employed method, which combines the state-of-the-art algebraic diagrammatic construction approximation at third order with Gorkov correlations, is capable of computing both the equation of state (EOS) and single-particle properties of nuclear matter. The EOS calculated with our approach and coupled-cluster theory are shown to agree very well. The one-nucleon spectral functions and the momentum distributions are discussed to gain insights into the dynamics of the interacting nuclear matter.
Comments: Proceeding of "10th International Conference on Quarks and Nuclear Physics" (QNP2024), 8-12 July, 2024, Barcelona, Spain. Submitted to Proceeding of Science (PoS)
Subjects: Nuclear Theory (nucl-th) ; Quantum Gases (cond-mat.quant-gas); Strongly Correlated Electrons (cond-mat.str-el)
Cite as: arXiv:2409.07432 [nucl-th]
  (or arXiv:2409.07432v1 [nucl-th] for this version)
  https://doi.org/10.48550/arXiv.2409.07432
arXiv-issued DOI via DataCite

Submission history

From: Francesco Marino [view email]
[v1] Wed, 11 Sep 2024 17:21:59 UTC (358 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • HTML (experimental)
  • TeX Source
  • Other Formats
view license
Current browse context:
cond-mat.str-el
< prev   |   next >
new | recent | 2024-09
Change to browse by:
cond-mat
cond-mat.quant-gas
nucl-th

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号