Mathematics > Statistics Theory
[Submitted on 22 Apr 2025
]
Title: Dynamical mean-field analysis of adaptive Langevin diffusions: Replica-symmetric fixed point and empirical Bayes
Title: 自适应Langevin扩散的动力学平均场分析:副本对称不动点和经验贝叶斯
Abstract: In many applications of statistical estimation via sampling, one may wish to sample from a high-dimensional target distribution that is adaptively evolving to the samples already seen. We study an example of such dynamics, given by a Langevin diffusion for posterior sampling in a Bayesian linear regression model with i.i.d. regression design, whose prior continuously adapts to the Langevin trajectory via a maximum marginal-likelihood scheme. Results of dynamical mean-field theory (DMFT) developed in our companion paper establish a precise high-dimensional asymptotic limit for the joint evolution of the prior parameter and law of the Langevin sample. In this work, we carry out an analysis of the equations that describe this DMFT limit, under conditions of approximate time-translation-invariance which include, in particular, settings where the posterior law satisfies a log-Sobolev inequality. In such settings, we show that this adaptive Langevin trajectory converges on a dimension-independent time horizon to an equilibrium state that is characterized by a system of scalar fixed-point equations, and the associated prior parameter converges to a critical point of a replica-symmetric limit for the model free energy. As a by-product of our analyses, we obtain a new dynamical proof that this replica-symmetric limit for the free energy is exact, in models having a possibly misspecified prior and where a log-Sobolev inequality holds for the posterior law.
Current browse context:
stat
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.