Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Apr 2025
(v1)
, revised 17 Sep 2025 (this version, v3)
, latest version 18 Sep 2025 (v4)
]
Title: Direct Video-Based Spatiotemporal Deep Learning for Cattle Lameness Detection
Title: 基于视频的时空深度学习用于牛跛行检测
Abstract: Cattle lameness is a prevalent health problem in livestock farming, often resulting from hoof injuries or infections, and severely impacts animal welfare and productivity. Early and accurate detection is critical for minimizing economic losses and ensuring proper treatment. This study proposes a spatiotemporal deep learning framework for automated cattle lameness detection using publicly available video data. We curate and publicly release a balanced set of 50 online video clips featuring 42 individual cattle, recorded from multiple viewpoints in both indoor and outdoor environments. The videos were categorized into lame and non-lame classes based on visual gait characteristics and metadata descriptions. After applying data augmentation techniques to enhance generalization, two deep learning architectures were trained and evaluated: 3D Convolutional Neural Networks (3D CNN) and Convolutional Long-Short-Term Memory (ConvLSTM2D). The 3D CNN achieved a video-level classification accuracy of 90%, with a precision, recall, and F1 score of 90.9% each, outperforming the ConvLSTM2D model, which achieved 85% accuracy. Unlike conventional approaches that rely on multistage pipelines involving object detection and pose estimation, this study demonstrates the effectiveness of a direct end-to-end video classification approach. Compared with the best end-to-end prior method (C3D-ConvLSTM, 90.3%), our model achieves comparable accuracy while eliminating pose estimation pre-processing.The results indicate that deep learning models can successfully extract and learn spatio-temporal features from various video sources, enabling scalable and efficient cattle lameness detection in real-world farm settings.
Submission history
From: Md Fahimuzzman Sohan [view email][v1] Wed, 23 Apr 2025 04:17:41 UTC (951 KB)
[v2] Tue, 13 May 2025 02:22:55 UTC (1,047 KB)
[v3] Wed, 17 Sep 2025 07:01:23 UTC (5,419 KB)
[v4] Thu, 18 Sep 2025 03:50:59 UTC (5,419 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.