Astrophysics > Astrophysics of Galaxies
[Submitted on 13 May 2025
]
Title: Neutron-Capture Element Signatures in Globular Clusters: Insights from the Gaia-ESO Survey
Title: 球状星团中的中子俘获元素特征:来自盖亚-欧几里得巡天的见解
Abstract: Globular clusters (GCs) are key to understanding the formation and evolution of our Galaxy. While the abundances of light and Fe-peak elements in GCs have been widely studied, investigations into heavier, neutron-capture elements -- and their connection to multiple stellar populations and GC origins -- remain limited. In this work, we analysed the chemical abundances of neutron-capture elements in GCs to trace the Galactic halo and to explore possible links to the MP phenomenon. Our goal is to better constrain the nature of the polluters responsible for intracluster enrichment and to distinguish the origin of GCs through the chemical signature of neutron-capture elements. We examined 14 GCs from the Gaia-ESO Survey, spanning a wide metallicity range, [Fe/H] from -0.40 to -2.32, using a homogeneous methodology. We focused on the abundances of Y, Zr, Ba, La, Ce, Nd, Pr, and Eu, derived from FLAMES-UVES spectra. These were compared with predictions from a stochastic Galactic chemical evolution model. With the exception of Zr, the model broadly reproduces the observed trends in neutron-capture elements. In some GCs, we found strong correlations between hot H-burning products (Na, Al) and s-process elements, pointing to a shared nucleosynthesis site, e.g., asymptotic giant branch stars of different masses and/or fast-rotating massive stars. We also detect a distinct difference in [Eu/Mg] ratio between in-situ ($\langle$[Eu/Mg]$\rangle$ = 0.14 dex) and ex-situ ($\langle$[Eu/Mg]$\langle$ = 0.32 dex) GCs, highlighting their different enrichment histories. Finally, on average, Type II GCs (NGC 362, NGC 1261, and NGC 1851) showed a s-process element spread ratio between second- and first-generations about twice as large as those seen in Type I clusters.
Submission history
From: Jose Schiappacasse Ulloa [view email][v1] Tue, 13 May 2025 09:55:29 UTC (1,544 KB)
Current browse context:
astro-ph.GA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.