Statistics > Machine Learning
[Submitted on 30 May 2025
]
Title: Overfitting has a limitation: a model-independent generalization error bound based on Rényi entropy
Title: 过拟合有一个局限性:基于Rényi熵的模型无关泛化误差界
Abstract: Will further scaling up of machine learning models continue to bring success? A significant challenge in answering this question lies in understanding generalization error, which is the impact of overfitting. Understanding generalization error behavior of increasingly large-scale machine learning models remains a significant area of investigation, as conventional analyses often link error bounds to model complexity, failing to fully explain the success of extremely large architectures. This research introduces a novel perspective by establishing a model-independent upper bound for generalization error applicable to algorithms whose outputs are determined solely by the data's histogram, such as empirical risk minimization or gradient-based methods. Crucially, this bound is shown to depend only on the R\'enyi entropy of the data-generating distribution, suggesting that a small generalization error can be maintained even with arbitrarily large models, provided the data quantity is sufficient relative to this entropy. This framework offers a direct explanation for the phenomenon where generalization performance degrades significantly upon injecting random noise into data, where the performance degrade is attributed to the consequent increase in the data distribution's R\'enyi entropy. Furthermore, we adapt the no-free-lunch theorem to be data-distribution-dependent, demonstrating that an amount of data corresponding to the R\'enyi entropy is indeed essential for successful learning, thereby highlighting the tightness of our proposed generalization bound.
Current browse context:
stat
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.