Statistics > Machine Learning
[Submitted on 30 May 2025
]
Title: Bayesian Data Sketching for Varying Coefficient Regression Models
Title: 贝叶斯数据速写在变系数回归模型中的应用
Abstract: Varying coefficient models are popular for estimating nonlinear regression functions in functional data models. Their Bayesian variants have received limited attention in large data applications, primarily due to prohibitively slow posterior computations using Markov chain Monte Carlo (MCMC) algorithms. We introduce Bayesian data sketching for varying coefficient models to obviate computational challenges presented by large sample sizes. To address the challenges of analyzing large data, we compress the functional response vector and predictor matrix by a random linear transformation to achieve dimension reduction and conduct inference on the compressed data. Our approach distinguishes itself from several existing methods for analyzing large functional data in that it requires neither the development of new models or algorithms, nor any specialized computational hardware while delivering fully model-based Bayesian inference. Well-established methods and algorithms for varying coefficient regression models can be applied to the compressed data.
Submission history
From: Sudipto Banerjee [view email][v1] Fri, 30 May 2025 22:09:06 UTC (1,252 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.