Computer Science > Databases
[Submitted on 1 Jun 2025
(v1)
, last revised 9 Jun 2025 (this version, v2)]
Title: SIFBench: An Extensive Benchmark for Fatigue Analysis
Title: SIFBench:疲劳分析的广泛基准
Abstract: Fatigue-induced crack growth is a leading cause of structural failure across critical industries such as aerospace, civil engineering, automotive, and energy. Accurate prediction of stress intensity factors (SIFs) -- the key parameters governing crack propagation in linear elastic fracture mechanics -- is essential for assessing fatigue life and ensuring structural integrity. While machine learning (ML) has shown great promise in SIF prediction, its advancement has been severely limited by the lack of rich, transparent, well-organized, and high-quality datasets. To address this gap, we introduce SIFBench, an open-source, large-scale benchmark database designed to support ML-based SIF prediction. SIFBench contains over 5 million different crack and component geometries derived from high-fidelity finite element simulations across 37 distinct scenarios, and provides a unified Python interface for seamless data access and customization. We report baseline results using a range of popular ML models -- including random forests, support vector machines, feedforward neural networks, and Fourier neural operators -- alongside comprehensive evaluation metrics and template code for model training, validation, and assessment. By offering a standardized and scalable resource, SIFBench substantially lowers the entry barrier and fosters the development and application of ML methods in damage tolerance design and predictive maintenance.
Submission history
From: Tushar Gautam [view email][v1] Sun, 1 Jun 2025 21:13:26 UTC (1,717 KB)
[v2] Mon, 9 Jun 2025 15:46:46 UTC (1,716 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.