Computer Science > Multimedia
[Submitted on 7 Jun 2025
]
Title: An Efficient Digital Watermarking Technique for Small Scale devices
Title: 一种适用于小型设备的高效数字水印技术
Abstract: In the age of IoT and mobile platforms, ensuring that content stay authentic whilst avoiding overburdening limited hardware is a key problem. This study introduces hybrid Fast Wavelet Transform & Additive Quantization index Modulation (FWT-AQIM) scheme, a lightweight watermarking approach that secures digital pictures on low-power, memory-constrained small scale devices to achieve a balanced trade-off among robustness, imperceptibility, and computational efficiency. The method embeds watermark in the luminance component of YCbCr color space using low-frequency FWT sub-bands, minimizing perceptual distortion, using additive QIM for simplicity. Both the extraction and embedding processes run in less than 40 ms and require minimum RAM when tested on a Raspberry Pi 5. Quality assessments on standard and high-resolution images yield PSNR greater than equal to 34 dB and SSIM greater than equal to 0.97, while robustness verification includes various geometric and signal-processing attacks demonstrating near-zero bit error rates and NCC greater than equal to 0.998. Using a mosaic-based watermark, redundancy added enhancing robustness without reducing throughput, which peaks at 11 MP/s. These findings show that FWT-AQIM provides an efficient, scalable solution for real-time, secure watermarking in bandwidth- and power-constrained contexts, opening the way for dependable content protection in developing IoT and multimedia applications.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.