Mathematics > Statistics Theory
[Submitted on 15 Jun 2025
(v1)
, revised 17 Jun 2025 (this version, v2)
, latest version 24 Aug 2025 (v3)
]
Title: On the attainment of the Wasserstein--Cramer--Rao lower bound
Title: 关于达到Wasserstein-Cramer-Rao下界的研究
Abstract: Recently, a Wasserstein analogue of the Cramer--Rao inequality has been developed using the Wasserstein information matrix (Otto metric). This inequality provides a lower bound on the Wasserstein variance of an estimator, which quantifies its robustness against additive noise. In this study, we investigate conditions for an estimator to attain the Wasserstein--Cramer--Rao lower bound (asymptotically), which we call the (asymptotic) Wasserstein efficiency. We show a condition under which Wasserstein efficient estimators exist for one-parameter statistical models. This condition corresponds to a recently proposed Wasserstein analogue of one-parameter exponential families (e-geodesics). We also show that the Wasserstein estimator, a Wasserstein analogue of the maximum likelihood estimator based on the Wasserstein score function, is asymptotically Wasserstein efficient in location-scale families.
Submission history
From: Takeru Matsuda [view email][v1] Sun, 15 Jun 2025 05:56:12 UTC (8 KB)
[v2] Tue, 17 Jun 2025 15:04:48 UTC (8 KB)
[v3] Sun, 24 Aug 2025 03:58:14 UTC (9 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.