Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > stat > arXiv:2507.04168

Help | Advanced Search

Statistics > Methodology

arXiv:2507.04168 (stat)
[Submitted on 5 Jul 2025 ]

Title: Generative Regression with IQ-BART

Title: 带有IQ-BART的生成回归

Authors:Sean O'Hagan, Veronika Ročková
Abstract: Implicit Quantile BART (IQ-BART) posits a non-parametric Bayesian model on the conditional quantile function, acting as a model over a conditional model for $Y$ given $X$. One of the key ingredients is augmenting the observed data $\{(Y_i,X_i)\}_{i=1}^n$ with uniformly sampled values $\tau_i$ for $1\leq i\leq n$ which serve as training data for quantile function estimation. Using the fact that the location parameter $\mu$ in a $\tau$-tilted asymmetric Laplace distribution corresponds to the $\tau^{th}$ quantile, we build a check-loss likelihood targeting $\mu$ as the parameter of interest. We equip the check-loss likelihood parametrized by $\mu=f(X,\tau)$ with a BART prior on $f(\cdot)$, allowing the conditional quantile function to vary both in $X$ and $\tau$. The posterior distribution over $\mu(\tau,X)$ can be then distilled for estimation of the {\em entire quantile function} as well as for assessing uncertainty through the variation of posterior draws. Simulation-based predictive inference is immediately available through inverse transform sampling using the learned quantile function. The sum-of-trees structure over the conditional quantile function enables flexible distribution-free regression with theoretical guarantees. As a byproduct, we investigate posterior mean quantile estimator as an alternative to the routine sample (posterior mode) quantile estimator. We demonstrate the power of IQ-BART on time series forecasting datasets where IQ-BART can capture multimodality in predictive distributions that might be otherwise missed using traditional parametric approaches.
Abstract: 隐式分位数 BART (IQ-BART) 在条件分位数函数上构建了一个非参数贝叶斯模型,该模型充当给定 $X$ 的 $Y$ 条件模型的模型。 其关键要素之一是使用 $1\leq i\leq n$ 的均匀采样值 $\tau_i$ 来扩充观测数据 $\{(Y_i,X_i)\}_{i=1}^n$,并将其作为分位数函数估计的训练数据。 利用位置参数$\mu$在一个$\tau$倾斜的不对称拉普拉斯分布中对应于$\tau^{th}$分位数的事实,我们构建了一个检查损失似然函数,以$\mu$作为感兴趣的参数。 我们将由$\mu=f(X,\tau)$参数化的检查损失似然与$f(\cdot)$上的 BART 先验相结合,使条件分位数函数在$X$和$\tau$上变化。 然后可以将$\mu(\tau,X)$上的后验分布提炼出来,用于估计{\em 分位数函数}以及通过后验抽样的变化来评估不确定性。 通过使用学习到的分位数函数进行逆变换抽样,可以立即获得基于模拟的预测推断。 条件分位数函数上的树结构使得可以进行灵活的无分布回归,并具有理论保证。 作为副产品,我们研究了后验均值分位数估计器,作为常规样本(后验众数)分位数估计器的替代方法。 我们在时间序列预测数据集上展示了 IQ-BART 的强大功能,其中 IQ-BART 可以捕捉预测分布中的多模态,这可能通过传统参数方法被遗漏。
Comments: 48 pages, 7 figures
Subjects: Methodology (stat.ME) ; Machine Learning (stat.ML)
Cite as: arXiv:2507.04168 [stat.ME]
  (or arXiv:2507.04168v1 [stat.ME] for this version)
  https://doi.org/10.48550/arXiv.2507.04168
arXiv-issued DOI via DataCite

Submission history

From: Sean O'Hagan [view email]
[v1] Sat, 5 Jul 2025 21:42:08 UTC (3,734 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • HTML (experimental)
  • TeX Source
license icon view license
Current browse context:
stat
< prev   |   next >
new | recent | 2025-07
Change to browse by:
stat.ME
stat.ML

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号