Mathematical Physics
[Submitted on 7 Jul 2025
]
Title: An operator algebraic approach to fusion category symmetry on the lattice
Title: 一种算子代数方法研究格点上的融合范畴对称性
Abstract: We propose a framework for fusion category symmetry on the (1+1)D lattice in the thermodynamic limit by giving a formal interpretation of SymTFT decompositions. Our approach is based on axiomatizing physical boundary subalgebra of quasi-local observables, and applying ideas from algebraic quantum field theory to derive the expected categorical structures. We show that given a physical boundary subalgebra $B$ of a quasi-local algebra $A$, there is a canonical fusion category $\mathcal{C}$ that acts on $A$ by bimodules and whose fusion ring acts by locality preserving quantum channels on the quasi-local algebra such that $B$ is recovered as the invariant operators. We show that a fusion category can be realized as symmetries of a tensor product spin chain if and only if all of its objects have integer dimensions, and that it admits an on-site action on a tensor product spin chain if and only if it admits a fiber functor. We give a formal definition of a topological symmetric state, and prove a Lieb-Schultz-Mattis type theorem. Using this, we show that for any fusion category $\mathcal{C}$ with no fiber functor there always exists gapless pure symmetric states on an anyon chain. Finally, we apply our framework to show that any state covariant under an anomalous Kramers-Wannier type duality must be gapless.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.