Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 17 Jul 2025
]
Title: Equation of state during (p)reheating with trilinear interactions
Title: 重加热期间具有三线性相互作用的状态方程
Abstract: We characterize the post-inflationary evolution of the equation of state of the universe from the end of inflation until the onset of radiation domination, when the inflaton is coupled to a daughter field through a trilinear interaction. We consider an inflaton potential that is quadratic near the minimum and flattens in the inflationary regime. By simulating the dynamics in 2+1-dimensional lattices, we have tracked the long-term evolution of the equation of state for about ten e-folds of expansion, for various coupling strengths. The trilinear interaction initially excites daughter field modes through a process of tachyonic resonance immediately after inflation and triggers a temporary deviation of the equation of state from $\bar{w} = 0$ to a maximum value $\bar{w} = \bar{w}_{\rm max} < 1/3$. However, at much later times, the inflaton homogeneous mode once again dominates the energy density, pushing the equation of state towards $\bar{w} = 0$ until the onset of perturbative reheating. By combining the lattice results with a Boltzmann approach, we characterize the entire post-inflationary expansion history, which allows to calculate precise predictions for the inflationary CMB observables. We also accurately compute the redshift of the stochastic gravitational wave background produced during preheating, and show that taking the temporary return of the equation of state towards $\bar{w} = 0$ into account can reduce the amplitude by many orders of magnitude relative to previous estimates.
Submission history
From: Kenneth Marschall [view email][v1] Thu, 17 Jul 2025 18:16:46 UTC (2,695 KB)
Current browse context:
astro-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.