Computer Science > Human-Computer Interaction
[Submitted on 19 Jul 2025
]
Title: Conch: Competitive Debate Analysis via Visualizing Clash Points and Hierarchical Strategies
Title: 康赫:通过可视化冲突点和层次策略进行竞争性辩论分析
Abstract: In-depth analysis of competitive debates is essential for participants to develop argumentative skills and refine strategies, and further improve their debating performance. However, manual analysis of unstructured and unlabeled textual records of debating is time-consuming and ineffective, as it is challenging to reconstruct contextual semantics and track logical connections from raw data. To address this, we propose Conch, an interactive visualization system that systematically analyzes both what is debated and how it is debated. In particular, we propose a novel parallel spiral visualization that compactly traces the multidimensional evolution of clash points and participant interactions throughout debate process. In addition, we leverage large language models with well-designed prompts to automatically identify critical debate elements such as clash points, disagreements, viewpoints, and strategies, enabling participants to understand the debate context comprehensively. Finally, through two case studies on real-world debates and a carefully-designed user study, we demonstrate Conch's effectiveness and usability for competitive debate analysis.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.