Computer Science > Multimedia
[Submitted on 24 Jul 2025
]
Title: CatchPhrase: EXPrompt-Guided Encoder Adaptation for Audio-to-Image Generation
Title: 语音到图像生成的EXPrompt引导编码器适应
Abstract: We propose CatchPhrase, a novel audio-to-image generation framework designed to mitigate semantic misalignment between audio inputs and generated images. While recent advances in multi-modal encoders have enabled progress in cross-modal generation, ambiguity stemming from homographs and auditory illusions continues to hinder accurate alignment. To address this issue, CatchPhrase generates enriched cross-modal semantic prompts (EXPrompt Mining) from weak class labels by leveraging large language models (LLMs) and audio captioning models (ACMs). To address both class-level and instance-level misalignment, we apply multi-modal filtering and retrieval to select the most semantically aligned prompt for each audio sample (EXPrompt Selector). A lightweight mapping network is then trained to adapt pre-trained text-to-image generation models to audio input. Extensive experiments on multiple audio classification datasets demonstrate that CatchPhrase improves audio-to-image alignment and consistently enhances generation quality by mitigating semantic misalignment.
Current browse context:
eess
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.