Mathematics > Analysis of PDEs
[Submitted on 4 Aug 2025
]
Title: Sparse Gabor representations of metaplectic operators: controlled exponential decay and Schrödinger confinement
Title: 稀疏Gabor表示的元射影算子:受控指数衰减和Schrödinger局域化
Abstract: Motivated by the phase space analysis of Schr\"odinger evolution operators, in this paper we investigate how metaplectic operators are approximately diagonalized along the corresponding symplectic flows by exponentially localized Gabor wave packets. Quantitative bounds for the matrix coefficients arising in the Gabor wave packet decomposition of such operators are established, revealing precise exponential decay rates together with subtler dispersive and spreading phenomena. To this aim, we present several novel results concerning the time-frequency analysis of functions with controlled Gelfand-Shilov regularity, which are of independent interest. As a byproduct, we generalize Vemuri's Gaussian confinement results for the solutions of the quantum harmonic oscillator in two respects, namely by encompassing general exponential decay rates as well as arbitrary quadratic Schr\"odinger propagators. In particular, we extensively discuss some prominent models such as the harmonic oscillator, the free particle in a constant magnetic field and fractional Fourier transforms.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.