Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 Aug 2025
]
Title: VLMQ: Efficient Post-Training Quantization for Large Vision-Language Models via Hessian Augmentation
Title: VLMQ:通过海森增强的大规模视觉-语言模型高效后训练量化
Abstract: Post-training quantization (PTQ) has emerged as an effective approach for compressing large models and accelerating their inference without retraining. While PTQ has been extensively studied in the context of large language models (LLMs), its applicability to vision-language models (VLMs) remains underexplored. In this paper, we identify a modality discrepancy (\emph{i.e.}, limited text tokens \emph{vs.} excessive and redundant vision tokens) of VLMs. However, existing Hessian-based LLM PTQ methods treat all tokens equally during quantization, resulting in severe performance drops when applied to VLMs. Motivated by this observation, we propose a novel importance-aware PTQ framework tailored for VLMs, dubbed VLMQ. Specifically, to address vision token redundancy, VLMQ 1) optimizes an importance-aware objective that yields an enhanced Hessian with token-level importance factors, while retaining compatibility with parallelized weight updates, and 2) ensures efficiency and effectiveness by computing these factors via a single lightweight block-wise backward pass, guided by a theoretical connection to token-level perturbations. Extensive evaluations on 8 benchmarks across 0.5B$\sim$32B VLMs demonstrate the state-of-the-art (SOTA) performance of our VLMQ, particularly under low-bit settings. For example, it achieves a substantial \textbf{16.45\%} improvement on MME-RealWorld under 2-bit quantization.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.