Computer Science > Computation and Language
[Submitted on 5 Aug 2025
]
Title: CF-RAG: A Dataset and Method for Carbon Footprint QA Using Retrieval-Augmented Generation
Title: CF-RAG:一种使用检索增强生成的碳足迹问答数据集和方法
Abstract: Product sustainability reports provide valuable insights into the environmental impacts of a product and are often distributed in PDF format. These reports often include a combination of tables and text, which complicates their analysis. The lack of standardization and the variability in reporting formats further exacerbate the difficulty of extracting and interpreting relevant information from large volumes of documents. In this paper, we tackle the challenge of answering questions related to carbon footprints within sustainability reports available in PDF format. Unlike previous approaches, our focus is on addressing the difficulties posed by the unstructured and inconsistent nature of text extracted from PDF parsing. To facilitate this analysis, we introduce CarbonPDF-QA, an open-source dataset containing question-answer pairs for 1735 product report documents, along with human-annotated answers. Our analysis shows that GPT-4o struggles to answer questions with data inconsistencies. To address this limitation, we propose CarbonPDF, an LLM-based technique specifically designed to answer carbon footprint questions on such datasets. We develop CarbonPDF by fine-tuning Llama 3 with our training data. Our results show that our technique outperforms current state-of-the-art techniques, including question-answering (QA) systems finetuned on table and text data.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.