Physics > Optics
[Submitted on 16 Sep 2025
]
Title: Dynamically reconfigurable topological routing in nonlinear photonic systems
Title: 非线性光子系统中的动态可重构拓扑路由
Abstract: The propagation path of topologically protected states is bound to the interface between regions with different topology, and as such, the functionality of linear photonic devices leveraging these states is fixed during fabrication. Here, we propose a mechanism for dynamic control over a driven dissipative system's local topology, yielding reconfigurable topological interfaces and thus tunable paths for protected routing. We illustrate our approach in non-resonantly pumped polariton lattices, where the nonlinear interaction between the polaritons and the exciton reservoir due to non-resonant pumping can yield a dynamical change of the topology. Moreover, using a continuous model of the polariton system based on a driven-dissipative Gross-Pitaevskii equation alongside the spectral localizer framework, we show that the local changes in the nonlinear non-Hermitian system's topology are captured by a local Chern marker. Looking forward, we anticipate such reconfigurable topological routing will enable the realization of novel classes of topological photonic devices.
Current browse context:
cond-mat.mes-hall
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.