Computer Science > Machine Learning
[Submitted on 17 Sep 2025
(v1)
, last revised 25 Sep 2025 (this version, v2)]
Title: A Variational Framework for Residual-Based Adaptivity in Neural PDE Solvers and Operator Learning
Title: 基于残差的神经微分方程求解器和算子学习自适应的变分框架
Abstract: Residual-based adaptive strategies are widely used in scientific machine learning but remain largely heuristic. We introduce a unifying variational framework that formalizes these methods by integrating convex transformations of the residual. Different transformations correspond to distinct objective functionals: exponential weights target the minimization of uniform error, while linear weights recover the minimization of quadratic error. Within this perspective, adaptive weighting is equivalent to selecting sampling distributions that optimize the primal objective, thereby linking discretization choices directly to error metrics. This principled approach yields three benefits: (1) it enables systematic design of adaptive schemes across norms, (2) reduces discretization error through variance reduction of the loss estimator, and (3) enhances learning dynamics by improving the gradient signal-to-noise ratio. Extending the framework to operator learning, we demonstrate substantial performance gains across optimizers and architectures. Our results provide a theoretical justification of residual-based adaptivity and establish a foundation for principled discretization and training strategies.
Submission history
From: Juan Toscano [view email][v1] Wed, 17 Sep 2025 17:34:03 UTC (6,287 KB)
[v2] Thu, 25 Sep 2025 21:51:05 UTC (6,360 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.