Computer Science > Multimedia
[Submitted on 18 Sep 2025
]
Title: CLAIP-Emo: Parameter-Efficient Adaptation of Language-supervised models for In-the-Wild Audiovisual Emotion Recognition
Title: CLAIP-Emo:用于真实场景视听情感识别的语言监督模型的参数高效适应
Abstract: Audiovisual emotion recognition (AVER) in the wild is still hindered by pose variation, occlusion, and background noise. Prevailing methods primarily rely on large-scale domain-specific pre-training, which is costly and often mismatched to real-world affective data. To address this, we present CLAIP-Emo, a modular framework that reframes in-the-wild AVER as a parameter-efficient adaptation of language-supervised foundation models (CLIP/CLAP). Specifically, it (i) preserves language-supervised priors by freezing CLIP/CLAP backbones and performing emotion-oriented adaptation via LoRA (updating \ensuremath{\le}4.0\% of the total parameters), (ii) allocates temporal modeling asymmetrically, employing a lightweight Transformer for visual dynamics while applying mean pooling for audio prosody, and (iii) applies a simple fusion head for prediction. On DFEW and MAFW, CLAIP-Emo (ViT-L/14) achieves 80.14\% and 61.18\% weighted average recall with only 8M training parameters, setting a new state of the art. Our findings suggest that parameter-efficient adaptation of language-supervised foundation models provides a scalable alternative to domain-specific pre-training for real-world AVER. The code and models will be available at \href{https://github.com/MSA-LMC/CLAIP-Emo}{https://github.com/MSA-LMC/CLAIP-Emo}.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.