Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Sep 2025
]
Title: Frame Sampling Strategies Matter: A Benchmark for small vision language models
Title: 框架采样策略很重要:小视觉语言模型的基准
Abstract: Comparing vision language models on videos is particularly complex, as the performances is jointly determined by the model's visual representation capacity and the frame-sampling strategy used to construct the input. Current video benchmarks are suspected to suffer from substantial frame-sampling bias, as models are evaluated with different frame selection strategies. In this work, we propose the first frame-accurate benchmark of state-of-the-art small VLMs for video question-answering, evaluated under controlled frame-sampling strategies. Our results confirm the suspected bias and highlight both data-specific and task-specific behaviors of SVLMs under different frame-sampling techniques. By open-sourcing our benchmarking code, we provide the community with a reproducible and unbiased protocol for evaluating video VLMs and emphasize the need for standardized frame-sampling strategies tailored to each benchmarking dataset in future research.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.