Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 18 Sep 2025
]
Title: Acoustic Simulation Framework for Multi-channel Replay Speech Detection
Title: 多通道回放语音检测的声学仿真框架
Abstract: Replay speech attacks pose a significant threat to voice-controlled systems, especially in smart environments where voice assistants are widely deployed. While multi-channel audio offers spatial cues that can enhance replay detection robustness, existing datasets and methods predominantly rely on single-channel recordings. In this work, we introduce an acoustic simulation framework designed to simulate multi-channel replay speech configurations using publicly available resources. Our setup models both genuine and spoofed speech across varied environments, including realistic microphone and loudspeaker impulse responses, room acoustics, and noise conditions. The framework employs measured loudspeaker directionalities during the replay attack to improve the realism of the simulation. We define two spoofing settings, which simulate whether a reverberant or an anechoic speech is used in the replay scenario, and evaluate the impact of omnidirectional and diffuse noise on detection performance. Using the state-of-the-art M-ALRAD model for replay speech detection, we demonstrate that synthetic data can support the generalization capabilities of the detector across unseen enclosures.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.