Quantum Physics
[Submitted on 23 Sep 2025
]
Title: Quantum-memory-assisted on-demand microwave-optical transduction
Title: 量子记忆辅助的按需微波光子转换
Abstract: Microwave-optical transducers and quantum memories are fundamental components of quantum repeaters, essential for developing a quantum internet in which solid-state quantum computers serve as nodes interconnected by optical fibers for data transmission. Although both technologies have made significant advancements, the integration of microwave-optical conversion and quantum memory functionalities remains a challenge. Here, we theoretically propose and experimentally demonstrate a memoryenhanced quantum microwave-optical transduction using a Rydberg ensemble. By utilizing a cascaded electromagnetically induced transparency process, we store microwave photons in a highly excited collective state and subsequently convert them into optical photons during the retrieval process. Taking advantage of the optical depth with order of millions for microwave photons in Rydberg ensemble, combined with a minimal storage dephasing rate at the single-photon level, the transducer achieves an areanormalized storage efficiency greater than 90%, a bandwidth of 2.1 MHz, and a noise equivalent temperature as low as 26 K, even in cavity-free conditions. Our findings pave the way for the practical implementation of quantum repeaters based on atomic ensembles in quantum information processing.
Current browse context:
physics.optics
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.