Quantum Physics
[Submitted on 23 Sep 2025
(v1)
, last revised 25 Sep 2025 (this version, v2)]
Title: HARLI CQUINN: Higher Adjusted Randomness with Linear In Complexity QUantum INspired Networks for K-Means
Title: HARLI CQUINN:用于K均值的线性复杂度量子启发网络的更高调整随机性
Abstract: We contrast a minimalistic implementation of quantum k-means algorithm to classical k-means algorithm. With classical simulation results, we demonstrate a quantum performance, on and above par, with the classical k-means algorithm. We present benchmarks of its accuracy for test cases of both well-known and experimental datasets. Despite extensive research into quantum k-means algorithms, our approach reveals previously unexplored methodological improvements. The encoding step can be minimalistic with classical data imported into quantum states more directly than existing approaches. The proposed quantum-inspired algorithm performs better in terms of accuracy and Adjusted Rand Index (ARI) with respect to the bare classical k-means algorithm. By investigating multiple encoding strategies, we provide nuanced insights into quantum computational clustering techniques.
Submission history
From: Jiten Oswal [view email][v1] Tue, 23 Sep 2025 02:32:13 UTC (134 KB)
[v2] Thu, 25 Sep 2025 01:46:44 UTC (134 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.