Computer Science > Graphics
[Submitted on 25 Sep 2025
]
Title: ArchGPT: Understanding the World's Architectures with Large Multimodal Models
Title: ArchGPT:使用大型多模态模型理解世界的建筑结构
Abstract: Architecture embodies aesthetic, cultural, and historical values, standing as a tangible testament to human civilization. Researchers have long leveraged virtual reality (VR), mixed reality (MR), and augmented reality (AR) to enable immersive exploration and interpretation of architecture, enhancing accessibility, public understanding, and creative workflows around architecture in education, heritage preservation, and professional design practice. However, existing VR/MR/AR systems are often developed case-by-case, relying on hard-coded annotations and task-specific interactions that do not scale across diverse built environments. In this work, we present ArchGPT, a multimodal architectural visual question answering (VQA) model, together with a scalable data-construction pipeline for curating high-quality, architecture-specific VQA annotations. This pipeline yields Arch-300K, a domain-specialized dataset of approximately 315,000 image-question-answer triplets. Arch-300K is built via a multi-stage process: first, we curate architectural scenes from Wikimedia Commons and filter unconstrained tourist photo collections using a novel coarse-to-fine strategy that integrates 3D reconstruction and semantic segmentation to select occlusion-free, structurally consistent architectural images. To mitigate noise and inconsistency in raw textual metadata, we propose an LLM-guided text verification and knowledge-distillation pipeline to generate reliable, architecture-specific question-answer pairs. Using these curated images and refined metadata, we further synthesize formal analysis annotations-including detailed descriptions and aspect-guided conversations-to provide richer semantic variety while remaining faithful to the data. We perform supervised fine-tuning of an open-source multimodal backbone ,ShareGPT4V-7B, on Arch-300K, yielding ArchGPT.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.