Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 25 Sep 2025
]
Title: From GPUs to RRAMs: Distributed In-Memory Primal-Dual Hybrid Gradient Method for Solving Large-Scale Linear Optimization Problem
Title: 从GPU到RRAM:用于解决大规模线性优化问题的分布式内存内原始对偶混合梯度方法
Abstract: The exponential growth of computational workloads is surpassing the capabilities of conventional architectures, which are constrained by fundamental limits. In-memory computing (IMC) with RRAM provides a promising alternative by providing analog computations with significant gains in latency and energy use. However, existing algorithms developed for conventional architectures do not translate to IMC, particularly for constrained optimization problems where frequent matrix reprogramming remains cost-prohibitive for IMC applications. Here we present a distributed in-memory primal-dual hybrid gradient (PDHG) method, specifically co-designed for arrays of RRAM devices. Our approach minimizes costly write cycles, incorporates robustness against device non-idealities, and leverages a symmetric block-matrix formulation to unify operations across distributed crossbars. We integrate a physics-based simulation framework called MELISO+ to evaluate performance under realistic device conditions. Benchmarking against GPU-accelerated solvers on large-scale linear programs demonstrates that our RRAM-based solver achieves comparable accuracy with up to three orders of magnitude reductions in energy consumption and latency. These results demonstrate the first PDHG-based LP solver implemented on RRAMs, showcasing the transformative potential of algorithm-hardware co-design for solving large-scale optimization through distributed in-memory computing.
Submission history
From: Md Tawsif Rahman Chowdhury [view email][v1] Thu, 25 Sep 2025 13:27:50 UTC (1,287 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.