Computer Science > Machine Learning
[Submitted on 25 Sep 2025
]
Title: RED-DiffEq: Regularization by denoising diffusion models for solving inverse PDE problems with application to full waveform inversion
Title: RED-DiffEq:用于解决逆PDE问题的去噪扩散模型正则化方法及其在全波形反演中的应用
Abstract: Partial differential equation (PDE)-governed inverse problems are fundamental across various scientific and engineering applications; yet they face significant challenges due to nonlinearity, ill-posedness, and sensitivity to noise. Here, we introduce a new computational framework, RED-DiffEq, by integrating physics-driven inversion and data-driven learning. RED-DiffEq leverages pretrained diffusion models as a regularization mechanism for PDE-governed inverse problems. We apply RED-DiffEq to solve the full waveform inversion problem in geophysics, a challenging seismic imaging technique that seeks to reconstruct high-resolution subsurface velocity models from seismic measurement data. Our method shows enhanced accuracy and robustness compared to conventional methods. Additionally, it exhibits strong generalization ability to more complex velocity models that the diffusion model is not trained on. Our framework can also be directly applied to diverse PDE-governed inverse problems.
Current browse context:
cs.LG
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.