Computer Science > Machine Learning
            [Submitted on 30 Sep 2025
            
            
            
            ]
          
          Title: Unsupervised Detection of Spatiotemporal Anomalies in PMU Data Using Transformer-Based BiGAN
Title: 基于Transformer的BiGAN在PMU数据中无监督检测时空异常
Abstract: Ensuring power grid resilience requires the timely and unsupervised detection of anomalies in synchrophasor data streams. We introduce T-BiGAN, a novel framework that integrates window-attention Transformers within a bidirectional Generative Adversarial Network (BiGAN) to address this challenge. Its self-attention encoder-decoder architecture captures complex spatio-temporal dependencies across the grid, while a joint discriminator enforces cycle consistency to align the learned latent space with the true data distribution. Anomalies are flagged in real-time using an adaptive score that combines reconstruction error, latent space drift, and discriminator confidence. Evaluated on a realistic hardware-in-the-loop PMU benchmark, T-BiGAN achieves an ROC-AUC of 0.95 and an average precision of 0.996, significantly outperforming leading supervised and unsupervised methods. It shows particular strength in detecting subtle frequency and voltage deviations, demonstrating its practical value for live, wide-area monitoring without relying on manually labeled fault data.
Submission history
From: Muhammad Imran Hossain [view email][v1] Tue, 30 Sep 2025 00:16:35 UTC (753 KB)
Bibliographic and Citation Tools
            Bibliographic Explorer (What is the Explorer?)
          
        
            Connected Papers (What is Connected Papers?)
          
        
            Litmaps (What is Litmaps?)
          
        
            scite Smart Citations (What are Smart Citations?)
          
        Code, Data and Media Associated with this Article
            alphaXiv (What is alphaXiv?)
          
        
            CatalyzeX Code Finder for Papers (What is CatalyzeX?)
          
        
            DagsHub (What is DagsHub?)
          
        
            Gotit.pub (What is GotitPub?)
          
        
            Hugging Face (What is Huggingface?)
          
        
            Papers with Code (What is Papers with Code?)
          
        
            ScienceCast (What is ScienceCast?)
          
        Demos
Recommenders and Search Tools
              Influence Flower (What are Influence Flowers?)
            
          
              CORE Recommender (What is CORE?)
            
          
              IArxiv Recommender
              (What is IArxiv?)
            
          arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.
 
               
  