Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > math > arXiv:2510.00221v1

Help | Advanced Search

Mathematics > Numerical Analysis

arXiv:2510.00221v1 (math)
[Submitted on 30 Sep 2025 ]

Title: Asymptotically compatible entropy-consistent discretization for a class of nonlocal conservation laws

Title: 非局部守恒定律一类的渐近相容熵一致离散化

Authors:Nicola De Nitti, Kuang Huang
Abstract: We consider a class of nonlocal conservation laws modeling traffic flows, given by $ \partial_t \rho_\varepsilon + \partial_x(V(\rho_\varepsilon \ast \gamma_\varepsilon) \rho_\varepsilon) = 0 $ with a suitable convex kernel $ \gamma_\varepsilon $, and its Godunov-type numerical discretization. We prove that, as the nonlocal parameter $ \varepsilon $ and mesh size $ h $ tend to zero simultaneously, the discrete approximation $ W_{\varepsilon,h} $ of $ W_\varepsilon := \rho_\varepsilon \ast \gamma_\varepsilon $ converges to the entropy solution of the (local) scalar conservation law $ \partial_t \rho + \partial_x(V(\rho) \rho) = 0 $, with an explicit convergence rate estimate of order $ \varepsilon+h+\sqrt{\varepsilon\, t}+\sqrt{h\,t} $. In particular, with an exponential kernel, we establish the same convergence result for the discrete approximation $ \rho_{\varepsilon,h} $ of $ \rho_\varepsilon $, along with an $ \mathrm{L}^1 $-contraction property for $ W_\varepsilon $. The key ingredients in proving these results are uniform $ \mathrm{L}^\infty $- and $\mathrm{TV}$-estimates that ensure compactness of approximate solutions, and discrete entropy inequalities that ensure the entropy admissibility of the limit solution.
Abstract: 我们考虑一类非局部守恒定律,用于模拟交通流,由$ \partial_t \rho_\varepsilon + \partial_x(V(\rho_\varepsilon \ast \gamma_\varepsilon) \rho_\varepsilon) = 0 $给出,带有合适的凸核$ \gamma_\varepsilon $,以及其Godunov型数值离散化。 我们证明了当非局部参数$ \varepsilon $和网格尺寸$ h $同时趋于零时,$ W_\varepsilon := \rho_\varepsilon \ast \gamma_\varepsilon $的离散逼近$ W_{\varepsilon,h} $收敛于 (局部) 标量守恒律$ \partial_t \rho + \partial_x(V(\rho) \rho) = 0 $的熵解,并给出了一个阶为$ \varepsilon+h+\sqrt{\varepsilon\, t}+\sqrt{h\,t} $的显式收敛速率估计。 特别是,使用指数核,我们建立了离散近似$ \rho_{\varepsilon,h} $对$ \rho_\varepsilon $的相同收敛结果,以及$ \mathrm{L}^1 $-收缩性质对于$ W_\varepsilon $。证明这些结果的关键要素是确保近似解紧性的统一$ \mathrm{L}^\infty $-和$\mathrm{TV}$-估计,以及确保极限解的熵可接受性的离散熵不等式。
Subjects: Numerical Analysis (math.NA) ; Analysis of PDEs (math.AP)
MSC classes: 35L65
Cite as: arXiv:2510.00221 [math.NA]
  (or arXiv:2510.00221v1 [math.NA] for this version)
  https://doi.org/10.48550/arXiv.2510.00221
arXiv-issued DOI via DataCite

Submission history

From: Nicola De Nitti [view email]
[v1] Tue, 30 Sep 2025 19:49:31 UTC (10,263 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • HTML (experimental)
  • TeX Source
view license
Current browse context:
math.NA
< prev   |   next >
new | recent | 2025-10
Change to browse by:
cs
cs.NA
math
math.AP

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号