Skip to main content
CenXiv.org
This website is in trial operation, support us!
We gratefully acknowledge support from all contributors.
Contribute
Donate
cenxiv logo > hep-ex > arXiv:2510.06150

Help | Advanced Search

High Energy Physics - Experiment

arXiv:2510.06150 (hep-ex)
[Submitted on 7 Oct 2025 ]

Title: Simulation of Muon-induced Backgrounds for the Colorado Underground Research Institute (CURIE)

Title: 缪子引起的背景的模拟用于科罗拉多地下研究设施(CURIE)

Authors:Dakota K. Keblbeck, Eric Mayotte, Uwe Greife, Kyle G. Leach, Wouter Van De Pontseele, Caitlyn Stone-Whitehead, Luke Wanner, Grace Wagner
Abstract: We present a comprehensive Monte Carlo simulation of muon-induced backgrounds for the Colorado Underground Research Institute (CURIE), a shallow-underground facility with $\approx 415$~m.w.e. overburden. Using coupled \textsc{mute} and \textsc{geant4} frameworks, we characterize the production and transport of muon-induced secondaries through site-specific rock compositions and geometries, establishing a proof-of-concept for high-precision, end-to-end simulations. Our simulations employ angular-dependent muon energy distributions, which improve secondary flux accuracy. For the Subatomic Particle Hideout and Cryolab I research spaces, we predict total muon-induced neutron fluxes of $(3.78 \pm 0.61_{\text{sys}}) \times 10^{-3}$~m$^{-2}$s$^{-1}$ and $(3.97 \pm 0.65_{\text{sys}}) \times 10^{-3}$~m$^{-2}$s$^{-1}$, respectively, consistent with empirical depth parameterizations. The simulated neutron energy spectra exhibit the expected thermal, epithermal, evaporation, and spallation components extending to GeV energies. Electromagnetic backgrounds are expected to dominate the total flux, with $\gamma$-ray components of $(5.54 \pm 0.91_{\text{sys}}) \times 10^{-1}$~m$^{-2}$s$^{-1}$ and $(6.51 \pm 1.06_{\text{sys}}) \times 10^{-1}$~m$^{-2}$s$^{-1}$ for the Subatomic Particle Hideout and Cryolab I facilities, respectively. These results provide quantitative background predictions for experimental design and sensitivity projections at shallow- and deep-underground facilities. They further demonstrate that local geology and overburden geometry influence muon-induced secondary yields and energy spectra, emphasizing the need for site-specific simulations for accurate underground background characterization. Therefore, the simulation framework has been made publicly available for the broader low-background physics community to enable meaningful inter-facility comparisons.
Abstract: 我们对科罗拉多地下研究设施(CURIE)的μ子诱导背景进行了全面的蒙特卡罗模拟,该设施是一个具有$\approx 415$~m.w.e. 覆盖层的浅层地下设施。 使用耦合的\textsc{静音}和\textsc{几何和粒子跟踪工具4}框架,我们通过特定地点的岩石组成和几何结构表征了μ子诱导的次级粒子的产生和传输,建立了高精度、端到端模拟的概念验证。 我们的模拟采用角度依赖的μ子能量分布,这提高了次级通量的准确性。 对于亚原子粒子藏身处和低温实验室研究空间,我们预测总μ子诱导中子通量分别为$(3.78 \pm 0.61_{\text{sys}}) \times 10^{-3}$~m$^{-2}$s$^{-1}$和$(3.97 \pm 0.65_{\text{sys}}) \times 10^{-3}$~m$^{-2}$s$^{-1}$,与经验深度参数化一致。 模拟的中子能谱表现出预期的热中子、缓发中子、蒸发和散裂成分,能量范围扩展到GeV。 电磁背景预计会主导总通量,子原子粒子藏身处和冰冻实验室I设施的$\gamma$射线成分分别为$(5.54 \pm 0.91_{\text{sys}}) \times 10^{-1}$~m$^{-2}$s$^{-1}$和$(6.51 \pm 1.06_{\text{sys}}) \times 10^{-1}$~m$^{-2}$s$^{-1}$。 这些结果为浅层和深层地下设施的实验设计和灵敏度预测提供了定量背景预测。 它们进一步表明,局部地质和覆盖层几何形状会影响μ子诱导的次级产率和能量谱,强调了进行特定地点模拟以准确表征地下背景的必要性。 因此,该模拟框架已向更广泛的低背景物理研究社区公开,以实现有意义的设施间比较。
Comments: 14 pages, 12 figures, 6 tables
Subjects: High Energy Physics - Experiment (hep-ex) ; Computational Physics (physics.comp-ph); Instrumentation and Detectors (physics.ins-det)
Cite as: arXiv:2510.06150 [hep-ex]
  (or arXiv:2510.06150v1 [hep-ex] for this version)
  https://doi.org/10.48550/arXiv.2510.06150
arXiv-issued DOI via DataCite

Submission history

From: Dakota Keblbeck [view email]
[v1] Tue, 7 Oct 2025 17:21:18 UTC (4,887 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled
  • View Chinese PDF
  • View PDF
  • HTML (experimental)
  • TeX Source
license icon view license
Current browse context:
physics.ins-det
< prev   |   next >
new | recent | 2025-10
Change to browse by:
hep-ex
physics
physics.comp-ph

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack

京ICP备2025123034号