Computer Science > Programming Languages
[Submitted on 9 Oct 2025
]
Title: The Functional Machine Calculus III: Control
Title: 函数机演算 III:控制
Abstract: The Functional Machine Calculus (Heijltjes 2022) is a new approach to unifying the imperative and functional programming paradigms. It extends the lambda-calculus, preserving the key features of confluent reduction and typed termination, to embed computational effects, evaluation strategies, and control flow operations. The first instalment modelled sequential higher-order computation with global store, input/output, probabilities, and non-determinism, and embedded both the call-by-name and call-by-value lambda-calculus, as well as Moggi's computational metalanguage and Levy's call-by-push-value. The present paper extends the calculus from sequential to branching and looping control flow. This allows the faithful embedding of a minimal but complete imperative language, including conditionals, exception handling, and iteration, as well as constants and algebraic data types. The calculus is defined through a simple operational semantics, extending the (simplified) Krivine machine for the lambda-calculus with multiple operand stacks to model effects and a continuation stack to model sequential, branching, and looping computation. It features a confluent reduction relation and a system of simple types that guarantees termination of the machine and strong normalization of reduction (in the absence of iteration). These properties carry over to the embedded imperative language, providing a unified functional-imperative model of computation that supports simple types, a direct and intuitive operational semantics, and a confluent reduction semantics.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.