Computer Science > Programming Languages
[Submitted on 12 Oct 2025
]
Title: A Verified High-Performance Composable Object Library for Remote Direct Memory Access (Extended Version)
Title: 用于远程直接内存访问的经过验证的高性能可组合对象库(扩展版本)
Abstract: Remote Direct Memory Access (RDMA) is a memory technology that allows remote devices to directly write to and read from each other's memory, bypassing components such as the CPU and operating system. This enables low-latency high-throughput networking, as required for many modern data centres, HPC applications and AI/ML workloads. However, baseline RDMA comprises a highly permissive weak memory model that is difficult to use in practice and has only recently been formalised. In this paper, we introduce the Library of Composable Objects (LOCO), a formally verified library for building multi-node objects on RDMA, filling the gap between shared memory and distributed system programming. LOCO objects are well-encapsulated and take advantage of the strong locality and the weak consistency characteristics of RDMA. They have performance comparable to custom RDMA systems (e.g. distributed maps), but with a far simpler programming model amenable to formal proofs of correctness. To support verification, we develop a novel modular declarative verification framework, called Mowgli, that is flexible enough to model multinode objects and is independent of a memory consistency model. We instantiate Mowgli with the RDMA memory model, and use it to verify correctness of LOCO libraries.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.