Computer Science > Information Theory
[Submitted on 13 Oct 2025
]
Title: Forward-Forward Autoencoder Architectures for Energy-Efficient Wireless Communications
Title: 用于高效无线通信的前向-前向自编码器架构
Abstract: The application of deep learning to the area of communications systems has been a growing field of interest in recent years. Forward-forward (FF) learning is an efficient alternative to the backpropagation (BP) algorithm, which is the typically used training procedure for neural networks. Among its several advantages, FF learning does not require the communication channel to be differentiable and does not rely on the global availability of partial derivatives, allowing for an energy-efficient implementation. In this work, we design end-to-end learned autoencoders using the FF algorithm and numerically evaluate their performance for the additive white Gaussian noise and Rayleigh block fading channels. We demonstrate their competitiveness with BP-trained systems in the case of joint coding and modulation, and in a scenario where a fixed, non-differentiable modulation stage is applied. Moreover, we provide further insights into the design principles of the FF network, its training convergence behavior, and significant memory and processing time savings compared to BP-based approaches.
Current browse context:
math.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.