Computer Science > Information Theory
[Submitted on 11 Oct 2025
]
Title: Information flow in multilayer perceptrons: an in-depth analysis
Title: 多层感知机中的信息流:深入分析
Abstract: Analysing how information flows along the layers of a multilayer perceptron is a topic of paramount importance in the field of artificial neural networks. After framing the problem from the point of view of information theory, in this position article a specific investigation is conducted on the way information is processed, with particular reference to the requirements imposed by supervised learning. To this end, the concept of information matrix is devised and then used as formal framework for understanding the aetiology of optimisation strategies and for studying the information flow. The underlying research for this article has also produced several key outcomes: i) the definition of a parametric optimisation strategy, ii) the finding that the optimisation strategy proposed in the information bottleneck framework shares strong similarities with the one derived from the information matrix, and iii) the insight that a multilayer perceptron serves as a kind of "adaptor", meant to process the input according to the given objective.
Current browse context:
cs
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.