Computer Science > Human-Computer Interaction
[Submitted on 20 Oct 2025
]
Title: Muscle Anatomy-aware Geometric Deep Learning for sEMG-based Gesture Decoding
Title: 肌肉解剖感知的几何深度学习用于sEMG手势解码
Abstract: Robust and accurate decoding of gesture from non-invasive surface electromyography (sEMG) is important for various applications including spatial computing, healthcare, and entertainment, and has been actively pursued by researchers and industry. Majority of sEMG-based gesture decoding algorithms employ deep neural networks that are designed for Euclidean data, and may not be suitable for analyzing multi-dimensional, non-stationary time-series with long-range dependencies such as sEMG. State-of-the-art sEMG-based decoding methods also demonstrate high variability across subjects and sessions, requiring re-calibration and adaptive fine-tuning to boost performance. To address these shortcomings, this work proposes a geometric deep learning model that learns on symmetric positive definite (SPD) manifolds and leverages unsupervised domain adaptation to desensitize the model to subjects and sessions. The model captures the features in time and across sensors with multiple kernels, projects the features onto SPD manifold, learns on manifolds and projects back to Euclidean space for classification. It uses a domain-specific batch normalization layer to address variability between sessions, alleviating the need for re-calibration or fine-tuning. Experiments with publicly available benchmark gesture decoding datasets (Ninapro DB6, Flexwear-HD) demonstrate the superior generalizability of the model compared to Euclidean and other SPD-based models in the inter-session scenario, with up to 8.83 and 4.63 points improvement in accuracy, respectively. Detailed analyses reveal that the model extracts muscle-specific information for different tasks and ablation studies highlight the importance of modules introduced in the work. The proposed method pushes the state-of-the-art in sEMG-based gesture recognition and opens new research avenues for manifold-based learning for muscle signals.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.