Computer Science > Computational Geometry
[Submitted on 21 Oct 2025
(v1)
, last revised 22 Oct 2025 (this version, v2)]
Title: Bounding the number of holes required for folding rectangular polyominoes into cubes
Title: 限定折叠矩形多米诺 into 立方体所需的孔数
Abstract: We study the problem of whether rectangular polyominoes with holes are cube-foldable, that is, whether they can be folded into a cube, if creases are only allowed along grid lines. It is known that holes of sufficient size guarantee that this is the case. Smaller holes which by themselves do not make a rectangular polyomino cube-foldable can sometimes be combined to create cube-foldable polyominoes. We investigate minimal sets of holes which guarantee cube-foldability. We show that if all holes are of the same type, the these minimal sets have size at most 4, and if we allow different types of holes, then there is no upper bound on the size.
Submission history
From: Florian Lehner [view email][v1] Tue, 21 Oct 2025 00:47:43 UTC (23 KB)
[v2] Wed, 22 Oct 2025 03:26:47 UTC (23 KB)
Current browse context:
cs.CG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.