Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Oct 2025
]
Title: Ninja Codes: Neurally Generated Fiducial Markers for Stealthy 6-DoF Tracking
Title: 忍者代码:用于隐蔽六自由度跟踪的神经生成参考标记
Abstract: In this paper we describe Ninja Codes, neurally-generated fiducial markers that can be made to naturally blend into various real-world environments. An encoder network converts arbitrary images into Ninja Codes by applying visually modest alterations; the resulting codes, printed and pasted onto surfaces, can provide stealthy 6-DoF location tracking for a wide range of applications including augmented reality, robotics, motion-based user interfaces, etc. Ninja Codes can be printed using off-the-shelf color printers on regular printing paper, and can be detected using any device equipped with a modern RGB camera and capable of running inference. Using an end-to-end process inspired by prior work on deep steganography, we jointly train a series of network modules that perform the creation and detection of Ninja Codes. Through experiments, we demonstrate Ninja Codes' ability to provide reliable location tracking under common indoor lighting conditions, while successfully concealing themselves within diverse environmental textures. We expect Ninja Codes to offer particular value in scenarios where the conspicuous appearances of conventional fiducial markers make them undesirable for aesthetic and other reasons.
Submission history
From: Yuichiro Takeuchi [view email][v1] Tue, 21 Oct 2025 18:01:05 UTC (20,241 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.